A better way to practice care.

Risk Control Hierarchy Refines Electrical Safety

In the late 1880s, a young boy was electrocuted when he accidentally touched an unlabeled, energized telegraph wire. That incident ignited an inventor by the name of Harold Pitney Brown to make an impassioned plea in a New York Post editorial to limit telegraph transmissions to what he considered a safer level of 300 Volts.

Perhaps Harold thought that limiting electrical transmissions to levels of 300 Volts or less would provide instant electrical safety. With over 120 years of hindsight, we view things much differently today. Yet, Harold stumbled across two important concepts. The notion of “300 Volts” is a technical discussion about the laws of electrical energy (Ohm’s Law, etc) that lends understanding to how electrical energy can kill or maim. On the other hand, the term “safe” reflects a working knowledge of the fundamental principles of safety. Our challenge is to combine our technical understanding of electricity with the principles of safety to ensure electrical safety is both practical and effective. The better we understand both concepts the greater the likelihood we will have to improve the status quo. The Risk Control Hierarchy (RCH) does an excellent job in blending these two key concepts. ahorro de energia mexico

Risk Control Hierarchy

The heartbeat of safety is the Risk Control Hierarchy (RCH), which is found in Appendix G of the ANSI Z10 Standard. The RCH helps us prioritize safety initiatives from least effective to most effective. For example, will you be safer wearing a helmet while riding a motorcycle or by selling it altogether? Obviously, selling the motorcycle eliminates the risk of an accident, while wearing a helmet offers protection to your head from the risk of a head injury during an accident. The RCH works by helping us rank risk reduction measures from most effective to least effective as per below:

1.) Eliminating the risk.
2.) Substituting a lesser risk.
3.) Engineering around risk.
4.) Awareness of every risk.
5.) Administrate and regulate behavior around risk.
6.) Protect workers while exposed to risk.

Note that each step above is equally important, yet not equally effective in protecting workers. Eliminating a risk is the most effective way to keep workers safe while protection from a risk by using Personal Protection Equipment (PPE) is least effective. There have been great improvements in the design of PPE, but its primary purpose is keeping workers alive – not 100% safe.

Leave a Reply

Your email address will not be published. Required fields are marked *